Decadal-scale changes in forest soil carbon and nitrogen storage are influenced by organic matter removal during timber harvest

نویسندگان

  • Ryan M. Mushinski
  • Thomas W. Boutton
  • D. Andrew Scott
چکیده

This study investigates whether different intensities of organic matter removal associated with timber harvest influence decadal-scale storage of soil organic carbon (SOC) and total nitrogen (TN) in the top 1 m of mineral soil 18 years postharvest in a Pinus taeda L. forest in the Gulf Coastal Plain. We quantified forest harvest-related changes in SOC, TN, microbial biomass carbon (MBC), and nitrogen (MBN) pools (0–100 cm) in unharvested control stands and in two organic matter removal treatment stands subjected to either (i) merchantable bole/stem-only harvest or (ii) whole-tree harvest + forest floor removal. In addition, δC of SOC and δN of TN were measured in mineral soil to provide insights regarding mechanisms that might explain changes in SOC and TN pool sizes. Soils were sampled seasonally for 1 year. Increasing organic matter removal intensity reduced SOC, TN, MBC, and MBN relative to the unharvested control. Furthermore, soils from whole-tree harvest + forest floor removal stands had lower δC and higher δN values, suggesting that increasing organic matter removal may decrease heterotrophic activity as well as increase rates of N loss. Seasonal variabilities in SOC and TN were correlated to changes in forest biological properties such as root biomass and forest floor mass. These results indicate that more intensive harvest methods may lead to decade-scale decreases in SOC and TN storage in surface and subsurface soils which could influence rates of biogeochemical processes, the availability of soil nutrients, and potential forest productivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Short-term Effects of Forest Soil Compaction and Site Organic Matter Removal on Mineralizable Soil Nitrogen in Central British Columbia

Mineralizable nitrogen (min-N) often correlates well with plant-available nitrogen (N) in soils, and might serve as a useful indicator of whether soils are detrimentally affected by timber harvesting practices. We examined how min-N responded to soil compaction and site organic matter removal after 1 and 5 years on three sites in central British Columbia. Mineral soil min-N was found to change ...

متن کامل

The Effect of Different Land Uses on New Indices of Soil Quality in Central Alborz Region

Different land uses have various effects on the changes of soil properties. The purpose of this study was to evaluate the effects of natural forest, needle-leaved plantation and rangelands of central Alborz on new indices of soil quality (i.e. organic matter stratification, carbon management index and soil biological activities). For this purpose, eight samples from organic layer (litter) and m...

متن کامل

Effective Physiological parameters and some physio-chemical parameters on soil organic carbon storage in Gonbad rangelands

Abstract Background and objectives: Access to real information and data on the impact of watershed management projects and their technical and economic evaluation is possible through representative and paired catchments. Since management operations and topographic characteristics have a great impact on carbon retention in ecosystems, this study aimed to determine the amount of soil organic ca...

متن کامل

Long-term changes in forest carbon under temperature and nitrogen amendments in a temperate northern hardwood forest.

Currently, forests in the northeastern United States are net sinks of atmospheric carbon. Under future climate change scenarios, the combined effects of climate change and nitrogen deposition on soil decomposition, aboveground processes, and the forest carbon balance remain unclear. We applied carbon stock, flux, and isotope data from field studies at the Harvard forest, Massachusetts, to the F...

متن کامل

Whole-tree and forest floor removal from a loblolly pine plantation have no effect on forest floor CO2 efflux 10 years after harvest

Intensive management of southern pine plantations has yielded multifold increases in productivity over the last half century. The process of harvesting merchantable material and preparing a site for planting can lead to a considerable loss of organic matter. Intensively managed stands may experience more frequent disturbance as rotations decrease in length, exposing the stands to conditions tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017